First record of Synidotea laticauda Benedict, 1897 (Crustacea: Isopoda) in the Guadiana Estuary (SW Iberian Peninsula)

Article in Limnetica - January 2018
DOI: 10.23818/limn.37.14

5 authors, including:

Maria Peg
Centro de Estudios y Experimentación de Obras Públicas
2 PUBLICATIONS 21 CITATIONS

Jorge R Sánchez-González
Grupo Tragsatec
27 PUBLICATIONS 15 CITATIONS

Andrés Mellado-Díaz
DBOS S.L.
34 PUBLICATIONS 627 CITATIONS

Some of the authors of this publication are also working on these related projects:

Implementing the WFD Directive in the Ebro River Basin (North Spain) View project

First record of *Synidotea laticauda* Benedict, 1897 (Crustacea: Isopoda) in the Guadiana Estuary (SW Iberian Peninsula)

Carlos Nuño1,*, María Peg1, Andrés Mellado-Díaz1,2, Jorge Rubén Sánchez-González1,3 and Manuel Toro1

2 DBO5 S.L. C/ Artesanía 23, Mairena del Aljarafe, 41927 Sevilla. Spain.

* Corresponding author: carlos.nuno@cedex.es

Received: 11/08/17 Accepted: 04/01/18

ABSTRACT

First record of *Synidotea laticauda* Benedict, 1897 (Crustacea: Isopoda) in the Guadiana Estuary (SW Iberian Peninsula)

The exotic isopod species *Synidotea laticauda* B. 1897 is first reported in the Guadiana Estuary, where it was detected, during 2009 and 2010, in the middle section (12-20 km from the mouth) and in the lower part of the upper sections (20-70 km from the mouth), where the species presented its optimal temperature and conductivity ranges between 11 ºC and 21 ºC and between 20 000 and 25 000 µS/cm. The absence of freshwater flood events due to the construction of the Alqueva Reservoir, and the intense ship traffic along the estuary may have been decisive for the introduction and establishment of this alien species.

Key words: *Synidotea laticauda*, Isopoda, Guadiana Estuary, exotic species

RESUMEN

Primer registro de *Synidotea laticauda* Benedict, 1897 (Crustacea: Isopoda) en el estuario del Guadiana (SO de la península ibérica)

El isópodo exótico *Synidotea laticauda* B. 1987, ha sido localizado por primera vez en el estuario del río Guadiana. En un estudio realizado entre el año 2009 y 2010 fue encontrado en el tramo medio (12-20 km desde la desembocadura) y zona baja del alto estuario (20-70 km desde la desembocadura), presentando unos rangos óptimos de temperatura y conductividad entre 11 ºC y 21 ºC y entre 20 000 y 25 000 µS/cm. La modificación del régimen de caudales, debido a la construcción del embalse de Alqueva y el intenso tráfico de embarcaciones a lo largo del estuario, pueden haber contribuido a la introducción y establecimiento de esta especie.

Palabras clave: *Synidotea laticauda*, Isopoda, río Guadiana, estuario, especies exóticas
INTRODUCTION

Synidotea laticauda Benedict, 1897 is native to the north-eastern Pacific region, where it was first described in San Francisco Bay, California (Benedict, 1897; Menzies & Miller, 1972), mainly developing in warm, oligo- or mesohaline shallow intertidal waters of estuarine systems (Boyd, 2008). It is commonly found in habitats with great bio-fouling development, like berths, buoys, bumpers and other submerged structures of port facilities. It is intolerant to drastic environmental fluctuations such as strong freshwater inputs as heavy rain events, which can drastically reduce salinity or rise temperature values above 25 °C, increasing its mortality rate (Boyd, 2008). However, the species has been reported to have survived salinity increments of up to 30-35 g/l by the same author.

Outside its native range, Synidotea laticauda has been previously cited in the Atlantic coast of USA, in Delaware Bay (Bushek & Boyd, 2006), in the Yangtze Estuary, China (Liu et al., 2017) and in Europe, in the estuary of the Gironde River, France (Mees & Fockeyed, 1993), the estuary of the river Guadalquivir in the Iberian Peninsula (Cuesta et al., 1996, Baldó et al., 2001), the estuary of the Schelde River, Belgium (Soors et al., 2010) and Netherlands (Faasse, 2011; Noël, 2011), and the port of Brunsbüttel, in the Elbe Estuary, Germany (ICES, 2016) (Fig.1). This note registers the first record of the exotic species Synidotea laticauda in the Guadiana Estuary, a meso-tidal 70 km long water body located in the southwest of the Iberian Peninsula.

MATERIAL AND METHODS

Ten sampling sites along the longitudinal axis of the Guadiana Estuary were selected, following a salinity gradient: 3 (S01, S02 y S03) in the middle estuary (mixing of fresh and sea water, 12 - 20 km from the mouth), and 7 (S04-S10) in the upper estuary (mainly freshwater, 20 - 70 km from the mouth). Benthic macroinvertebrates were sampled using artificial substrates (Table 1). Two samples per site were taken seasonally from January 2009 to February 2010. Not all sites could be analysed in all the dates (Table 1) due to the theft or loss of some of the substrates.

Each artificial substrate consisted of a 25 cm sided stainless steel cube covered by a plastic netting with 1 cm mesh size in the upper 2/3, and 1 mm in the lower 1/3, to avoid specimen loss when removing the trap from the bed. It was stuffed with organic and mineral materials, collected in the immediate surroundings (stones, reeds, etc.), and tied to the shore with a nylon line to pass unnoticed.

The retrieved substrates were cleaned by shaking them under a strong stream of water, then, using sieves, the coarser organic and inorganic matter was removed (stones, branches, twigs, etc.) after being properly cleaned. The remaining sample was fixated using ethanol (95 %) for later identification and estimation of the relative abundances in the laboratory.

At each substrate location a temperature-conductivity vertical profile from the maximum depth to the surface was performed, both in high and low tide regimes, with a multiparameter probe YSI 6600 V2. Mean values within the uppermost 4 metres (the depth range at which
First record of *Synidotea laticauda* in the Guadiana Estuary

Table 1. Location of artificial substrates and sampling dates. *Localización de los sustratos artificiales y fecha de muestreo.*

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S01</td>
<td>29 S 639682 4125585</td>
<td>MIDDLE ESTUARY</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>S02</td>
<td>29 S 638310 4131581</td>
<td>MIDDLE ESTUARY</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>S03</td>
<td>29 S 638576 4136579</td>
<td>MIDDLE ESTUARY</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>S04</td>
<td>29 S 637233 4140675</td>
<td>UPPER ESTUARY</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>S05</td>
<td>29 S 636759 4143057</td>
<td>UPPER ESTUARY</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>S06</td>
<td>29 S 635560 4147155</td>
<td>UPPER ESTUARY</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>S07</td>
<td>29 S 635377 4150654</td>
<td>UPPER ESTUARY</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>S08</td>
<td>29 S 633316 4152308</td>
<td>UPPER ESTUARY</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>S09</td>
<td>29 S 631553 4153972</td>
<td>UPPER ESTUARY</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>S10</td>
<td>29 S 630701 4156927</td>
<td>UPPER ESTUARY</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Substrates were submerged (S01-S10) were selected to characterize each sample.

The estimation of the optimal range of temperature and conductivity of *S. laticauda* in the estuary was determined according to the robust optima method (Cristobal et al., 2014). This method is based on the median and the interquartile range. The calculation is made assuming that each value of the observed environmental variable is given with a probability proportional to the number of individuals found; the median and interquartile range of this discrete distribution is calculated. This is equivalent to defining the optimal as the median, and the tolerance as the interquartile range for the sample formed by each of the found individuals (Cristobal et al., 2014).

RESULTS AND DISCUSSION

Over 300 individuals of *Synidotea laticauda* (Fig.2) were collected in 4 of the 10 sampled sites: three in the middle estuary (substrates S1 to S3) and one in the lower part of the upper estuary (S4 substrate) (Table 2).

The species presented its highest abundance in a temperature range from 10 to 25 °C (Fig.3) and conductivities ranking from 500 to 3 300 µS/cm (Fig. 4), being its optimal ranges from 11 °C to 21 °C and from 20 000 to 25 000 µS/cm (Fig. 5). These data resemble those observed for the native distribution of the species (Boyd, 2008).

The most common species found to co-occur with *Synidotea laticauda* were the following: *Cyathura carinata, Leptocheirus pilosus, Balanus sp., Corophium sp., Gammarus sp., Palaemon longirostris, Carcinus maenas, Sphaeroma serratum, Ostrea sp., Oligochaeta, Hediste diversicolor* and *Nereis sp.*
Table 2. Artificial substrates where Synidotea laticauda has been found. Sustratos artificiales donde se ha localizado Synidotea laticauda.

<table>
<thead>
<tr>
<th>Date</th>
<th>Substrate</th>
<th>Num. individuals</th>
<th>Conductivity (µS/cm)</th>
<th>Temp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 2009</td>
<td>S01</td>
<td>41</td>
<td>25916 – 25674</td>
<td>11.42 – 11.38</td>
</tr>
<tr>
<td></td>
<td>S04</td>
<td>20</td>
<td>504 - 528</td>
<td>10.34 – 10.26</td>
</tr>
<tr>
<td>May 2009</td>
<td>S02</td>
<td>24</td>
<td>2550 - 6108</td>
<td>19.74 – 19.58</td>
</tr>
<tr>
<td>August 2009</td>
<td>S03</td>
<td>1</td>
<td>33810</td>
<td>24.95</td>
</tr>
<tr>
<td>October 2009</td>
<td>S03</td>
<td>8</td>
<td>30910</td>
<td>21.13</td>
</tr>
<tr>
<td></td>
<td>S04</td>
<td>227</td>
<td>19540</td>
<td>21.22</td>
</tr>
</tbody>
</table>

Figure 3. Abundance distribution of Synidotea laticauda in relation to the temperature gradient. Distribución de la abundancia de Synidotea laticauda en relación al gradiente de temperatura.
Regarding the current presence of *Synidotea laticauda* in the studied area since 2010, only a local research group (University of Sevilla) has conducted a survey in 2016-2017 without finding the species (Sánchez-Moyano pers. com.). This fact indicates a less successful colonization in the Guadiana Estuary in comparison with the Guadalquivir Estuary, where the species can show very high densities (Ruiz-Delgado et al., 2016).

In 2002 the Alqueva Reservoir was finished, located approximately 150 km upstream from the Guadiana River mouth, covering an area of 250 km² and holding up to 4150 hm³ of freshwater. After its construction, a more homogeneous flow regime and a diminution of the magnitude and frequency of freshwater flood events has been reported (Morais et al., 2009; Garel & Ferreira, 2015; Garel, 2017) as the cause of changes in macrobenthic crustaceans in the estuary (Leitão, 2008). This new homogeneous flow regime may have favoured the colonization and establishment of *Synidotea laticauda* in the Guadiana Estuary, as it has been the case in other studies (Bunn & Arthingthon, 2002; Johnson et al., 2008). Shipping traffic of medium and small vessels along the lower 50 km of the Guadiana Estuary, mainly for recreational use, and coming from all over the world, could have acted as vectors for the accidental introduction of this species. Some authors have also reported recent alien species invasions and establishment in this estuary and nearby salt marshes, and have pointed to shipping traffic and flow regulation as potential causes (Chicharo et al., 2009; Gonçalves et al., 2017).
ACKNOWLEDGEMENTS

This study has been funded by a Management Delegation Agreement of the Ministry of the Environment (General Directorate of Water) to CEDEX (2007-2013). A. Rasines helped in laboratory works and F. Mengibar, M. Verdugo, S. Arias and J. Moreno in field works, and J. Sánchez for hand-making and repairing some of the artificial substrates. We are very grateful to Dr. J.E. Sánchez Moyano (University of Sevilla) for the confirmation of the taxonomic identification of the species.

REFERENCES

BUSHEK, D. & S. BOYD. 2006. Seasonal abundance and occurrence of the Asian isopod Synidotea laedorsalis in Delaware Bay, USA. Biological Invasions, 8: 697-702. DOI: 10.1007/s10530-005-2890-5

First record of *Synidotea laticauda* in the Guadiana Estuary

